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1. PROOF OF THEOREM[I]

In this section, we prove Theorem [I]in the paper regarding
the optimization program

A
min |Z], + 5 |[W'X - W'DJ||},
zZ,J,W 2 (1
st. WIXXTW =1,,, J =2Z — diag (Z).

Given the fixed Jx4+; and Wy, Zy4; is updated by the
following objective function:
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Given a positive number A > 0, the hard thresholding operator
T (Y) is defined as follows [1]:
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where Y € R™*" is a matrix and z represents an element of
Y. The closed-form solution of is obtained by using the
operator 7T :

Y
Ziy1 =T /o (J,m + ’“) . 4)
Kk

M

Theorem 1 The convergence condition ||Zj — | .« < €
will eventually be satisfied as k increases if p and p satisfy
the following conditions:

p>2 and pu>0

where k represents the number of iterations and ¢ is a small
positive number, e.g., € = 1074,
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Proof According to @), Zy+1 has a closed-form solution in
@). Thus, we have:

Y
1Zr+1 — Tty = HT\/T <Jk+1 + k) = Jkt1
B Mk

max

Suppose that p > 2 and p > 0, and we obtain i, — 0o when
k — oo according to py = ppug—1. This indicates that we will
obtain

Yk ik
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as k steadily increases. Thus, we have

1Zk — Ikl max = 1Zr+1 = Tkt 1l max

|| Ykt _ ‘ Yy
Hk—1 || max Hk |l max
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In addition, we obtain

PIY k=1l max = Y k=1l max + k=1 (Zk = Tk) | ax)
Y1

— (o= 1) Ykl — 1k ‘
HEk—1 || max

= (P = 2) IYk-1ll max
> 0.

It is easy to see that the following inequality holds:

||Yk—1||max + ||:U/k>—l (Zk - J’C)Hmax
> Hkal + pE—1 (Zk - Jk)“max'

Hence,
||Zk - Jk”max - ||Zk+1 - ‘]k+1||max > 0.

This means there exists a certain k with two conditions, i.e.,
p > 2 and py > 0, such that the following inequality holds:

1Zks1 = Trrillpax < €

where | = 1. Hence, convergence will eventually be achieved
as k gradually increases if p > 2 and p > 0. ]



II. PROOF OF THEOREM [2]

In this section, we prove Theorem [2| in the paper. We
consider a general form of the I ;-norm optimization problem:
£(2) =g 2], + 5 &' - €2
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st. diag(Z') =0

where f > 0 is a parameter. Problem () is a convex
optimization problem. Let

of (Z)
OW 0 ©
and we have
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diagonal matrix whose diagonal entries are given by ——
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where Z! = [z7,z}, ..., 2]

ey by

To prove Theorem [2} we need to prove Lemma
Lemma 1 For two matrices A € RY™ and B € R™*", the
following inequality holds:

2 2 2
[AB|F < [|A[F Bz -
Proof First, we have
|AB|% = tr (ATABB”)
by the definition of the trace function.

Second, we want to prove that

tr (ATABB”) < tr (ATA) tr (BB") (8)

which implies that ||ABH% < ||A||?D ||B||% It is easy to see
that AT A and BB” are positive semidefinite and symmet-
ric matrices. Using the singular value decomposition (SVD)

results of ATA and BBT, we obtain
ATA =U,ZAU%, ©)
BB” = Ug¥pUg,

where Uy and Up are unitary matrices, and o and ¥y
are diagonal matrices whose diagonal elements are singular
values of AT A and BBT, respectively. The singular values
of ATA and BBT” are all nonnegative. Then,

tr (ATABB") =tr (U4XaU UpXgUg)

<tr (ULU4XAURUg) tr (Sg) (10)
=tr (UaZaUy) tr (UgSgUg)
=tr (ATA)tr (BBT).
Hence,
IAB|7 < |AII% B -
0

The proof of Theorem [2]is motivated by a feature selection
method [2].

Theorem 2 The objective value of Equation will mono-
tonically decrease until convergence to the global optimum of
Problem (9).

Proof Suppose that Z! 11 is the global optimal solution to
Problem (), i.e.,

Zhy =g iy [, 4 5 € - €]

7zl diag(Z')=0

Problem @) is a convex optimization problem, which indicates
that

1 2
1Zesill, 1 + 5 1€~ CZts [

1 2
< 2l + 5 1€ = G2l

Thus, )
o -0z} < o - oz
According to Lemma [I| we have
9 2
N

where 1 is an identity of size n; X n;. Then, we have the
following inequality:

tr(Zh40 (Zh) "~ Z4(Z)") < tr (2(Zhy - 24).
Using the constraint diag (Zl) = 0 in Problem (3), we obtain

tr(Zi_H(Zi_H)T - Z (Zi)T) <0).

3 ‘
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and (zz) , are the i-th row vectors of Z! 41 and

Then
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where (z ) .
Zé, respectively. Hence,

Hsz+1H2,1 =< ”ZéHz,r

This means that the objective value of Equation will
monotonically decrease at each iteration. At the (t+1)-
th iteration, Equation holds for given th-&-l and Zi_,_l.
Consequently, the objective value of Equation (1) will converge
to the global optimum of Problem (D). O
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