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I. PROOF OF THEOREM 1
In this section, we prove Theorem 1 in the paper regarding

the optimization program

min
Z,D
‖Z‖0 +

α

2
‖X−DZ‖2F +

β

2
‖D‖2F

s.t. diag (Z) = 0

(1)

Given the fixed Jk+1, Zk+1 is updated by the following
scheme:

Zk+1 = min
Zk+1

1

µk
‖Zk+1‖0 +

1

2

∥∥∥∥Zk+1 −
(
Jk+1 +

Yk

µk

)∥∥∥∥2
F

,

Zk+1 ← Zk+1 − d (Zk+1) .
(2)

The hard thresholding operator H√λ (x) is defined as follows
[1]:

H√λ (x) =
{

0, if |x| ≤
√
λ

x, if |x| >
√
λ

. (3)

The closed-form solution of the first part of (2) is obtained
using the operator H:

Zk+1 = H√
1
µk

(
Jk+1 +

Yk

µk

)
. (4)

Theorem 1 The convergence condition
‖Zk+1 − Jk+1‖max < ε will eventually be satisfied as
k increases if ρ and µ satisfy the following conditions:

ρ > 2 and µ > 0

where k represents the number of iterations and ε is a small
positive number, e.g., ε = 10−4.

Proof Given the optimal Zk, Jk and Dk at the k-th iteration,
where k > 1, we continue to optimize Zk+1 and Jk+1 by
fixing Dk and Yk at the (k + 1)-th iteration. According to
(4), we know that Zk+1 has a closed-form solution. Thus, we
have the following equality:

‖Zk+1 − Jk+1‖max =

∥∥∥∥H√
1
µk

(
Jk+1 +

Yk

µk

)
− Jk+1

∥∥∥∥
max

.

(5)
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Suppose ρ > 2 and µ > 0, and we get µk → ∞ when
k →∞ according to µk = ρµk−1. This indicates that we will
obtain

H√
1
µk

(
Jk+1 +

Yk

µk

)
= Jk+1 +

Yk

µk

as k steadily increases. According to (5), we get

‖Zk+1 − Jk+1‖max =

∥∥∥∥Yk

µk

∥∥∥∥
max

=

∥∥∥∥Yk−1 + µk−1 (Zk − Jk)

µk

∥∥∥∥
max

≤
∥∥∥∥Yk−1

µk

∥∥∥∥
max

+

∥∥∥∥µk−1 (Zk − Jk)

µk

∥∥∥∥
max

=

∥∥∥∥Yk−1

ρµk−1

∥∥∥∥
max

+

∥∥∥∥Zk − Jk
ρ

∥∥∥∥
max

.

Thus,

‖Zk − Jk‖max ≥
ρ

2
‖Zk+1 − Jk+1‖max.

Then,

‖Zk − Jk‖max − ‖Zk+1 − Jk+1‖max

≥
(ρ
2
− 1
)
‖Zk+1 − Jk+1‖max

According to ‖Zk+1 − Jk+1‖max > 0 and ρ > 2, we get

‖Zk − Jk‖max − ‖Zk+1 − Jk+1‖max > 0

when Zk − Jk 6= 0. This means there exists a certain k with
two conditions, i.e., ρ > 2 and µ1 > 0, such that the following
inequality holds:

‖Zk+1 − Jk+1‖max ≤ ε,

where µ = µ1. Hence, convergence will eventually be achieved
as k gradually increases if ρ > 2 and µ > 0. �

II. PROOF OF THEOREM 2
In this section, we prove Theorem 2 in the paper.

Theorem 2 Suppose that convergence is achieved after the k-
th iteration in Algorithm 1. The sparsity ratio (SR) of a matrix
Z is defined as SR(Zk) =

‖Zk‖0
num(Zk)

, where num(Zk) is the
number of elements in Zk. The SR of Z will always remain
stable, i.e., |SR(Zk+1)− SR(Zk)| < ε, after k iterative
computations, if

µk−1 > 1 and ρ > 1



2

where ‖Zk‖0 counts the number of nonzero entries in the
matrix Zk, ε = 1e−6 and k > 1.

Proof Let Zk+1
min be the minimum absolute value among all

elements except zeros in the matrix Zk+1. According to (3),
we have:

Zk+1
min >

√
1

µk
,

where Zk+1 = H√
1
µk

(
Jk+1 +

Yk

µk

)
. Suppose Algorithm 1

converges after the k-th iteration, and so

Zk+1 ≈ Jk+1.

Because Zkmin >
√

1
µk−1

and µk > µk−1 > 1, the number of
nonzero elements in Zk+1 remains unchanged after the k-th
iteration. This indicates that the SR of Z remains stable, i.e.,
|SR(Zk+1)− SR(Zk)| < ε at least before the k-th iteration.
�
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